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Outline

• Interior Point Methods for QP
– logarithmic barrier function
– complementarity conditions
– linear algebra

• Support Vector Machine training
– Quadratic Programming formulation
– specific features

• IPMs for SVM training
– separable formulations !!!
– linear and nonlinear kernels in SVMs

• Challenges remaining
– nonlinear kernels in SVMs
– indefinite kernels in SVMs
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Part 1:

Interior Point Methods for QP
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“Elements” of the IPM

What do we need to derive the Interior Point Method?

• logarithmic barriers.

• duality theory:
Lagrangian function;
first order optimality conditions.

• Newton method.

Wright, Primal-Dual Interior-Point Methods, SIAM, 1997.

Andersen, Gondzio, Mészáros and Xu,
Implementation of Interior Point Methods for Large Scale Linear
Programming, in: Interior Point Methods in Mathematical Pro-
gramming, T Terlaky (ed.), Kluwer Academic, 1996, pp. 189–252.
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Logarithmic barrier

− ln vi

“replaces” the inequality

vi ≥ 0 .

x

−ln x

1

Observe that

min e−
∑n

i=1 ln vi ⇐⇒ max
n

∏

i=1

vi

The minimization of −∑n
i=1 ln vi is equivalent to the maximization

of the product of distances from all hyperplanes defining the positive
orthant: it prevents all vi from approaching zero.
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Logarithmic barrier

Replace the primal QP

min cTv + 1
2v

TQv
s.t. Av = b,

v ≥ 0,

with the primal barrier program

min cTv + 1
2v

TQv − µ
n
∑

j=1
ln vj

s.t. Av = b.

Lagrangian:

L(v, λ, µ) = cTv +
1

2
vTQv − λT (Av − b) − µ

n
∑

j=1

ln vj.
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Conditions for a stationary point of the Lagrangian

∇vL(v, λ, µ) = c − ATλ + Qv − µV −1e = 0
∇λL(v, λ, µ) = Av − b = 0,

where V −1 = diag{v−1
1 , v−1

2 , · · · , v−1
n }.

Let us denote

s = µV −1e, i.e. V Se = µe.

The First Order Optimality Conditions are:

Av = b,
ATλ + s − Qv = c,

V Se = µe,
(v, s) > 0.
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First Order Optimality Conditions

Active-set Method: Interior Point Method:

Av = b
ATλ + s − Qv = c

V Se = 0
v, s ≥ 0.

Av = b
ATλ + s − Qv = c

V Se = µe
v, s ≥ 0.
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Complementarity vi · si = 0 ∀i = 1, 2, ..., n.

Active-set Method makes a guess of optimal partition:

A ∪ I = {1, 2, ..., n}.
For active constraints (i ∈ A), vi = 0 and

vi · si = 0 ∀i ∈ A.

For inactive constraints (i ∈ I), si = 0 hence

vi · si = 0 ∀i ∈ I.

Interior Point Method uses ε-mathematics:

Replace vi · si = 0 ∀i = 1, 2, ..., n
by vi · si = µ ∀i = 1, 2, ..., n.

Force convergence µ → 0.
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Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a
large system of nonlinear equations

f (v, λ, s) = 0,

where f : R2n+m 7→ R2n+m is a mapping defined as follows:

f (v, λ, s) =





Av − b
ATλ + s − Qv − c

V Se − µe



 .

Actually, the first two terms of it are linear; only the last one,
corresponding to the complementarity condition, is nonlinear.
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Newton Method (cont’d)

Note that

∇f (v, λ, s) =





A 0 0
−Q AT I

S 0 V



 .

Thus, for a given point (v, λ, s) we find the Newton direction
(∆v, ∆λ, ∆s) by solving the system of linear equations:





A 0 0
−Q AT I

S 0 V



 ·
[

∆v
∆λ
∆s

]

=





b − Av
c − ATλ − s + Qv
µe − V Se



 .
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Linear Algebra of IPM for QP





A 0 0

−Q AT I
S 0 V





[

∆v
∆λ
∆s

]

=

[

ξp
ξd
ξµ

]

=





b − Av
c − ATλ − s + Qv

µe − V Se



 .

Use the third equation to eliminate

∆s = V −1(ξµ − S∆v)

= −V −1S∆v + V −1ξµ,

from the second equation and get
[

−Q − Θ−1 AT

A 0

] [

∆v
∆λ

]

=

[

ξd − V −1ξµ
ξp

]

.

where Θ = V S−1 is a diagonal scaling matrix.

Θ is always very ill-conditioned.
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Augmented system
[

−Q−Θ−1 AT

A 0

] [

∆v
∆λ

]

=

[

r
h

]

=

[

ξd − V −1ξµ
ξp

]

.

Symmetric but indefinite linear system.
In general, it may be difficult to solve.

Separable Quadratic Programs
When matrix Q is diagonal (Q = D), the augmented system can be
further reduced. Eliminate

∆v = (D + Θ−1)−1(AT∆λ − r),

to get normal equations (symmetric, positive definite system)

(A(D + Θ−1)−1AT )∆λ = g = A(D + Θ−1)−1r + h.
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Sparsity Issues in QP
Observation: the inverse of the sparse matrix may be dense.
Example








1 1
1 2 1

1 2 1
1 2 1

1 2









−1

=

















1
1 1

1 1
1 1

1 1









·









1 1
1 1

1 1
1 1

1

















−1

=









1 −1 1 −1 1
1 −1 1 −1

1 −1 1
1 −1

1









·









1
−1 1

1 −1 1
−1 1 −1 1

1 −1 1 −1 1









=









5 −4 3 −2 1
−4 4 −3 2 −1

3 −3 3 −2 1
−2 2 −2 2 −1

1 −1 1 −1 1









.

IPMs for QP:
Do not explicitly invert the matrix Q + Θ−1

to form A(Q + Θ−1)−1AT unless Q is diagonal.
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Interior Point Methods

Theory: IPMs converge in O(
√

n) or O(n) iterations
Practice: IPMs converge in O(log n) iterations
... but one iteration may be expensive!

Suppose A ∈ Rm×n is a dense matrix.
Major computational effort when solving separable QP
(separable QP means that Q = D, diagonal).

build H = A(Q + Θ−1)−1AT O(nm2)

compute Cholesky H = LΛLT O(m3)

Recall n � m.
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Ill-conditioning of Θ = V S−1

For active constraints: Θj = vj/sj → 0 Θ−1
j → ∞;

For inactive constraints: Θj = vj/sj → ∞ Θ−1
j → 0.

Goldfarb and Scheinberg, A product form Cholesky factoriza-
tion for handling dense columns in IPMs for linear programming,
Mathematical Programming, 99(2004) 1-34.

Although Θ̃ = (Q + Θ−1)−1 behaves badly, the Cholesky factoriza-
tion H = LΛLT behaves well:

Λ captures instability (variability) of Θ̃;
L is well conditioned (bounded independently of Θ̃).

Represent L = L1L2 . . . Lm, where Li has entries only in column i.

Drawback: PFCF is sequential by nature.
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Interior Point Methods: Summary

• Interior Point Methods for QP

– polynomial algorithms
– excellent practical behaviour
– competitive for small problems (≤ 1,000,000 vars)
– beyond competition for large problems (≥ 1,000,000 vars)

• Opportunities for SVM training with IPMs

– dense data
– very large size
– well-suited to parallelism

Montreal, 18 June 2009 17
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Part 2:

Support Vector Machine training

Montreal, 18 June 2009 18
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Classification

We consider a set of points X = {x1, x2, . . . , xn}, xi ∈ Rm

to be classified into two subsest of “good” and “bad” ones.

X = G ∪ B and G ∩ B = ∅.

We look for a function f : X 7→ R such that

f (x) ≥ 0 if x ∈ G and

f (x) < 0 if x ∈ B.

Usually n � m.

Montreal, 18 June 2009 19
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Linear Classification

We consider a case when f is a linear function:

f (x) = wTx + b,

where w ∈ Rm and b ∈ R.
In other words we look for a hyperplane which separates “good”
points from “bad” ones.

In such case the decision rule is given by y = sgn(f (x)).
If f (xi) ≥ 0, then yi = +1 and xi ∈ G.
If f (xi) < 0, then yi = −1 and xi ∈ B.

We say that there is a linearly separable training sample

S = ((x1, y1), (x2, y2), . . . , (xn, yn)).

Montreal, 18 June 2009 20
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How does it work?

Given a linearly separable database (training sample)

S = ((x1, y1), (x2, y2), . . . , (xn, yn))

find a separating hyperplane

wTx + b = 0,

which satisfies

yi(w
Txi + b) ≥ 1, ∀i = 1, 2, . . . , n.

Given a new (unclassified) point x0, compute

y0 = sgn(wTx0 + b)

to decide whether x0 is “good” or “bad”.

Montreal, 18 June 2009 21
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Separating Hyperplane
To guarantee a nonzero margin of separation we look for a hyperplane

wTx + b = 0,

such that
wTxi + b ≥ 1 for “good” points; wTxi + b ≤ −1 for “bad” points.

This is equivalent to:
wTxi
‖w‖ + b

‖w‖ ≥ 1
‖w‖ for “good” points;

wTxi
‖w‖ + b

‖w‖ ≤ − 1
‖w‖ for “bad” points.

In this formualtion the normal vector of the separating hyperplane
w
‖w‖ has unit length. In this case the margin between “good” and

“bad” points is measured by 2
‖w‖. This margin should be maximised.

This can be achieved by minimising the norm ‖w‖.
Montreal, 18 June 2009 22
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QP Formulation

Finding a separating hyperplane can be formulated as a quadratic
programming problem:

min 1
2w

Tw

s.t. yi(w
Txi + b) ≥ 1, ∀i = 1, 2, . . . , n.

In this formulation the Euclidean norm of w is minimized.
This is clearly a convex optimization problem.

(We can minimize ‖w‖1 or ‖w‖∞ and then the problem can be
reformulated as an LP.)

Two major difficulties:

• Clusters may not be separable at all
−→ minimize the error of misclassifications;

• Clusters may be separable by a nonlinear manifold
−→ find the right feature map.

Montreal, 18 June 2009 23



J. Gondzio SVM training with IPMs

Difficult Cases
Nonseparable clusters:

B

G

G
G

G

G
G

G
BB

B
B

B
B BBB

B

B

G

G
G

B
G

B

1

2

ξ

ξ

Errors when defining clusters of good
and bad points.
Minimize the global error of misclas-
sifications: ξ1 + ξ2.

Use nonlinear feature map:
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G

G
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Φ
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Linearly nonseparable case

If perfect linear separation is impossible then for each misclassified
data we introduce a slack variable ξi which measures the distance
between the hyperplane and misclassified data.

Finding the best hyperplane can be formulated as a quadratic pro-
gramming problem:

min 1
2w

Tw + C
n
∑

i=1
ξi

s.t. yi(w
Txi + b) + ξi ≥ 1, ∀i = 1, 2, . . . , n,

ξi ≥ 0 ∀i = 1, 2, . . . , n,

where C (C > 0) controls the penalisation for misclassifications.

Montreal, 18 June 2009 25



J. Gondzio SVM training with IPMs

We will derive the dual quadratic problem.

We associate Lagrange multipliers z ∈ Rn (z≥0) and s ∈ Rn (s≥0)

with the constraints yi(w
Txi + b) + ξi ≥ 1 and ξ ≥ 0, and write the

Lagrangian

L(w, b, ξ, z, s) =
1

2
wTw + C

n
∑

i=1

ξi −
n

∑

i=1

zi(yi(w
Txi + b)+ ξi− 1)−sT ξ.

SVM community uses α instead of z.

Montreal, 18 June 2009 26
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Dual Quadratic Problem

Stationarity conditions (with respect to all primal variables):

∇w L(w, b, ξ, z, s) = w −
n
∑

i=1
yixizi = 0

∇ξi L(w, b, ξ, z, s) = C − zi − si = 0

∇b L(w, b, ξ, z, s) =
n
∑

i=1
yizi = 0.

Substituting these equations into the Lagrangian function we get

L(w, b, ξ, z, s) =

n
∑

i=1

zi −
1

2

n
∑

i,j=1

yiyj(x
T
i xj)zizj.

Montreal, 18 June 2009 27
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Hence the dual problem has the form:

max
n
∑

i=1
zi − 1

2

n
∑

i,j=1
yiyj(x

T
i xj)zizj

s.t.
n
∑

i=1
yizi = 0,

0 ≤ zi ≤ C, ∀i = 1, 2, . . . , n,

SVM community uses α instead of z.
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Dual Quadratic Problem (continued)

Observe that the dual problem has a neat formulation in which only
dual variables z are present. (The primal variables (w, b, ξ) do not
appear in the dual.)

Define a dense matrix Q ∈ Rn×n such that qij = yiyj(x
T
i xj) .

Rewrite the (dual) quadratic program:

max eTz − 1
2z

TQz,

s.t. yTz = 0,
0 ≤ z ≤ Ce,

where e is the vector of ones in Rn.

The matrix Q corresponds to a specific linear kernel function.
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Dual Quadratic Problem (continued)

The primal problem is convex hence the dual problem must be well
defined too. The dual problem is to maximise the concave function.
We can prove it directly.

Lemma: The matrix Q is positive semidefinite.

Proof: Define

G = [y1x1|y2x2| . . . |ynxn]T ∈ Rn×m

and observe that

Q = GGT (i.e., qij = yiyj(x
T
i xj)).

For any z ∈ Rn we have

zTQz = (zTG)(GTz) = ‖GTz‖2 ≥ 0

hence Q is positive semidefinite.
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Part 3:

IPMs for Support Vector Machine training

Montreal, 18 June 2009 31
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Interior Point Methods in SVM Context

Fine and Scheinberg, Efficient SVM training using low-rank ker-
nel representations, J. of Machine Learning Res., 2(2002) 243-264.

Ferris and Munson, Interior point methods for massive support
vector machines, SIAM J. on Optimization, 13(2003) 783-804.

Woodsend and Gondzio, Exploiting separability in large-scale
linear SVM training, Tech Rep MS-07-002, Edinburgh 2007.
http://www.maths.ed.ac.uk/~gondzio/reports/wgSVM.html

Unified framework which includes:
• Classification (`1 and `2 error)
• Universum SVM
• Ordinal Regression
• Regression

Reformulate QPs as separable.
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IPMs for SVMs: Exploit separability

Key trick: represent Q = F TDF , where F ∈ Rk×n, k � n.
Introduce new variable u = Fz.

Observe: zTQz = zTFTDFz = uTDu.

min cTz + 1
2z

TQz
s.t. Az = b,

z ≥ 0.
⇐⇒

min cTz + 1
2u

TDu
s.t. Az = b,

Fz − u = 0,
z ≥ 0.

non-separable QP separable QP

m constraints m + k constraints

n variables n + k variables

Montreal, 18 June 2009 33



J. Gondzio SVM training with IPMs

Comparison: SVM-HOPDM vs other algorithms
Data with 255 attributes. C = 1, 10% misclassified.
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Comparison: SVM-HOPDM vs other algorithms
Data with 255 attributes. C = 100, 10% misclassified.
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Comparison: of training times using real-world data sets.

Each data set was trained using C = 1, 10 and 100.

NC indicates that the method did not converge to a solution.

Data set C SVM- SVMlight SVMperf Lib- LibSVM SVMTorch SVM-QP SVM-QP
(n × m) HOPDM Linear presolve
Adult 1 16.5 87.7 280.7 1.6 192.4 621.8 164.5 188.8
32561×123 10 26.5 1043.3 3628.0 9.3 857.7 5046.0 284.1 206.8

100 27.9 10447.4 29147.2 64.2 5572.1 44962.5 544.8 216.9
Covtype 1 47.7 992.4 795.6 8.5 2085.8 2187.9 731.8 405.6
150000×54 10 52.7 6021.2 12274.5 34.3 2516.7 10880.6 971.6 441.3

100 55.4 66263.8 58699.8 235.2 6588.0 74418.1 1581.8 457.4
MNIST 1 79.6 262.9 754.1 9.3 197.1 660.1 233.0 1019.1
10000×780 10 83.4 3425.5 8286.8 65.4 1275.2 5748.1 349.4 1104.4

100 86.2 NC 196789.0 NC 11456.4 54360.6 602.5 1267.1
SensIT 1 55.2 913.5 8418.3 53.6 2542.0 2814.4 535.2 456.7
78823×100 10 60.1 7797.4 > 125000 369.1 7867.8 21127.8 875.4 470.7

100 63.6 NC > 125000 NC 49293.7 204642.6 1650.1 489.3
USPS 1 13.2 15.0 40.9 4.4 10.4 7.7 51.2 117.4
7291×256 10 14.2 147.4 346.6 27.7 20.9 23.9 64.7 127.4

100 14.3 1345.2 2079.5 NC 93.8 142.4 86.9 143.8
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Computational effort of IPM-based SVM implementation:

build H = A(Q + Θ−1)−1AT O(nm2)

compute Cholesky H = LΛLT O(m3)

Attempts to reduce this effort

Gertz and Griffin, SVM classifiers for large datasets, Tech Rep
ANL/MCS-TM-289, Argonne National Lab, 2005.

−→ use iterative method (preconditioned conjugate gradient).

Jung, O’Leary and Tits, Adaptive constraint reduction for train-
ing SVMs, Electronic Trans on Num Analysis 31(2008) 156-177.

−→ use a subset of points n1 � n
mimic “active-set” strategy within IPM.
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Parallelism
Exploit bordered block-diagonal structure in augm. system
Break H into blocks:

H =













H1 AT
1

H2 AT
2. . . ...

Hp AT
p

A1 A2 . . . Ap 0













,

and decompose

H =







L1
. . .

Lp
LA1

. . . LAp
L0













Λ1
. . .

Λp
Λ0

















LT
1 LT

A1. . . ...
LT

p LT
Ap

LT
0










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Parallelism (continued)
• Cholesky factor preserves block-structure:

Hi = LiΛiL
T
i , Li = I, Λi = Hi, i = 1..p

LAi
= AiL

−T
i Λ−1

i = AiH
−1
i , i = 1..p

H0 = −∑p
i=1 AiH

−1
i AT

i = L0Λ0L
T
0

• And the system H

[

∆v
∆λ

]

=

[

r
h

]

is solved by

ti = L−1
i ri, i = 1..p

t0 = L−1
0 (h −

∑

LAi
ti)

qi = Λ−1
i ti, i = 0..p

∆λ = L−T
0 q0

∆vi = L−T
i (qi − LT

Ai
∆λ), i = 1..p

• Operations (Cholesky, Solve, Product) performed on sub-blocks
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Comparison: Parallel software

PASCAL Large Scale Learning Challenge

http://largescale.first.fraunhofer.de/about/

Data set n m
Alpha 500000 500
Beta 500000 500
Gamma 500000 500
Delta 500000 500
Espilon 500000 2000
Zeta 500000 2000
FD 2560000 900
OCR 3500000 1156
DNA 6000000 800

OOPS Object-Oriented Parallel Solver
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
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Dataset # cores C OOPS PGPDT PSVM Milde
Alpha 16 1 39 3673 1684 (80611)

0.01 50 4269 4824 (85120)
Beta 16 1 120 5003 2390 (83407)

0.01 48 4738 4816 (84194)
Gamma 16 1 44 — 1685 (83715)

0.01 49 7915 4801 (84445)
Delta 16 1 40 — 1116 (57631)

0.01 46 9492 4865 (84421)
Epsilon 32 1 730 — 17436 (58488)

0.01 293 — 36319 (56984)
Zeta 32 1 544 — 14368 (22814)

0.01 297 — 37283 (68059)
FD 32 1 3199 — — (39227)

0.01 2152 — — (52408)
OCR 32 1 1361 — — (58307)

0.01 1330 — — (36523)
DNA 48 1 2668 — — —

0.01 6557 — — 14821
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Dataset C OOPS LibLinear LaRank
n # cores Time n Time n Time

Alpha 1 500,000 16 39 500,000 147 500,000 3354
0.01 50 112 2474

Beta 1 500,000 16 120 500,000 135 500,000 6372
0.01 48 112 1880

Gamma 1 500,000 16 44 500,000 (8845) 500,000 —
0.01 49 348 20318

Delta 1 500,000 16 40 500,000 (13266) 500,000 —
0.01 46 429 —

Epsilon 1 500,000 32 730 250,000 316 500,000 5599
0.01 293 265 2410

Zeta 1 500,000 32 544 250,000 278 500,000 —
0.01 297 248 —

FD 1 2,560,000 32 3199 500,000 231 500,000 1537
0.01 2152 193 332

OCR 1 3,500,000 32 1361 250,000 181 500,000 5695
0.01 1330 121 4266

DNA 1 6,000,000 48 2668 600,000 144 600,000 300
0.01 6557 30 407
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Accuracy measured using area under precision recall curve.

Evaluation results taken from PASCAL Challenge website.

Dataset OOPS LibLinear LaRank
Alpha 0.1345 0.1601 0.1606
Beta 0.4988 0.4988 0.5001
Gamma 0.1174 0.1185 0.1187
Delta 0.1344 0.1346 0.1355
Epsilon 0.0341 0.4935 0.4913
Zeta 0.0115 0.4931 0.4875
FD 0.2274 0.2654 0.3081
OCR 0.1595 0.1660 0.1681
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Nonlinear and/or Indefinite Kernels:

A kernel is a function K, such that for all xi, xj ∈ X

K(xi, xj) = 〈φ(xi), φ(xj)〉,
where φ is a mapping from X to an (inner product) feature space F .
We use 〈., .〉 to denote a scalar product.

Linear Kernel K(xi, xj) = xT
i xj.

Polynomial Kernel K(xi, xj) = (xT
i xj + 1)d.

Gaussian Kernel K(xi, xj) = e
−‖xi−xj‖2

σ2 .
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Nonlinear and/or Indefinite Kernels:

Kernels are in general dense matrices making large-scale SVM train-
ing computationally demanding (or impossible).

Challenge: How to approximate kernels?

Find Q̃ with “desirable” properties such that

distance(Q, Q̃)

is minimized. The distance may be measured with a matrix norm
(say, Frobenius) or a Bregman divergence.

Dhillon and Tropp, Matrix nearness problems with Bregman
divergences, SIAM J. on Matrix An. & Appl., 29(2007) 1120-1146.

Lanckriet, Cristianini, Bartlett, Ghaoui and Jordan,
Learning the kernel matrix with semidefinite programming,
Journal of Machine Learning Research 5 (2004), 27-72.
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IPM perspective: nonlinear/indefinite Kernels:
Approximate kernel matrix Q,Qij = K(xi, xj) using low rank outer
product

Q ≈ LΛLT + D,

where L ∈ Rn×k, k � n.

Exploit separability within IPMs
Augmented system becomes:

H =

















LT

L
















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Conclusions:

Interior Point Methods

→ are well-suited to large scale optimization

Support Vector Machine training

→ requires a solution of very large optimization problem

IPMs provide an attractive approach

to solve SVM training problems
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Thank you for your attention!

Woodsend and Gondzio,
Exploiting separability in large-scale linear SVM training,
Tech Rep MS-07-002, Edinburgh 2007.
http://www.maths.ed.ac.uk/~gondzio/reports/wgSVM.html

Woodsend and Gondzio,
Hybrid MPI/OpenMP parallel linear SVM training,
Tech Rep ERGO-09-001, Edinburgh, 2009.
http://www.maths.ed.ac.uk/~gondzio/reports/wgHybridSVM.html
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