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Part 1:

Interior Point Methods for QP
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“Elements” of the IPM
What do we need to derive the Interior Point Method?

e logarithmic barriers.

e duality theory:
Lagrangian function;
first order optimality conditions.

e Newton method.

Wright, Primal-Dual Interior-Point Methods, STAM, 1997.

Andersen, Gondzio, Mészaros and Xu,

Implementation of Interior Point Methods for Large Scale Linear
Programming, in: Interior Point Methods in Mathematical Pro-
gramming, T Terlaky (ed.), Kluwer Academic, 1996, pp. 189-252.
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Logarithmic barrier inx
—Inwv;
“replaces” the inequality
v, >0 .
X
1
Observe that \

n
min e~ =10V max H v;
1=1
The minimization of — " ; Inv; is equivalent to the maximization

of the product of distances from all hyperplanes defining the positive
orthant: it prevents all v; from approaching zero.
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Logarithmic barrier

Replace the primal QP

min clv + %UTQU
s.t. Av = b,
v > 0,

with the primal barrier program
n
min ¢lv+ %UTQU —py Inw;
j=1
s.t. Av =b.

Lagrangian:

1
L(v,\, u) =c¢ v+—vTQv—)\T Av — b) — Zlnv].
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Conditions for a stationary point of the Lagrangian

VoL(v, A ) = ¢ — ATA+Qu—pV e = 0
V)\L<U)\,LL): Av—b = 0,
where V™ 1 dzag{vl 77]2 » T _1}

Let us denote

S = ,uV_le, ie. VSe=pue.

The First Order Optimality Conditions are:

Av = b,

AN+ s—Qu = ¢
VSe = e,

(v,s) > 0.
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First Order Optimality Conditions

Active-set Method: Interior Point Method:
Av = b Av = b
AN+ s—Qu = ¢ AN+ s—Qu =¢
VSe =0 VSe = pe
v, s > 0. v, s > 0.
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Complementarity v;-s;, =0 Vi=1,2,...,n.

Active-set Method makes a guess of optimal partition:
AUTZ ={1,2,...,n}.
For active constraints (i € A), v; = 0 and
vi-s; =0 VieA
For inactive constraints (¢ € Z), s; = 0 hence

v; -8, =0 Viel.

Interior Point Method uses s-mathematics:

Replace wv;-s, =0 Vi=1,2,...,n
by vi-8;=pn Vi=12,..,n.

Force convergence p — 0.
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Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a
large system of nonlinear equations

f(v7 A? S) — O?
where f : R2MHM s R20HM i 4 mapping defined as follows:
I Av — b
f<U7>\78>: AT)\+S—QU—C .
I ViSe — pe |

Actually, the first two terms of it are linear; only the last one,
corresponding to the complementarity condition, is nonlinear.
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Newton Method (cont’d)

Note that
0
AT
0

Vv, A s) =

<=~ ©

Oz@k

Thus, for a given point (v, A, s) we find the Newton direction
(Av, AN, As) by solving the system of linear equations:

A 0 0O WAE b— Av
—Q AT T AN | =|e— AN — s+ Qu
S 0V | As | | pe —VSe ]
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Linear Algebra of IPM for QP

A0 0]rAvl 1657 | b— Av |
QAT 1] | AN | =& | =]c=ATN—s+Qu
S 0 V] | As | & ] e — V. Se ]

Use the third equation to eliminate
As = V_l(fﬂ — SAv)
= —VisAav+ VI,

from the second equation and get

[—Q—@—l AT Av] B [gd—v—lgﬂl
A0 | [AN] T & |

where © = V.S is a diagonal scaling matrix.

O is always very ill-conditioned.
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Augmented system
[—Q—@—lAT

Av I A N P V_lfu
A 0 AN h Ep '
Symmetric but indefinite linear system.
In general, it may be difficult to solve.

Separable Quadratic Programs

When matrix @ is diagonal () = D), the augmented system can be
further reduced. Eliminate

Av = (D+0 O~ 1aTAax - ),
to get mormal equations (symmetric, positive definite system)

(AD+O0"H1ADAN = g=AD+0" Y7l 41
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SVM training with IPMs

Sparsity Issues in QP

Observation: the inverse of the sparse matrix may be dense.

Example
11 17! ('1 1711 1\
121 11 11
121 = 11 11
121 11 11
_ 12 \ | 11 1]
1 -1 1 -1 1] [ 1 ] 5 —4 3 =2
1 -1 1 —1 -1 1 —4 4 -3 2 -
= 1 -1 1 I —1 1 3 —3 3 —2
1 —1 -1 1 -1 1 -2 2 =2 2 -
I 1 I 1 -1 1 —1 1_ 1 -1 1 —1
IPMs for QP:
Do not explicitly invert the matrix Q + 71
to form A(Q + O~ H~1AL unless Q is diagonal.
Montreal, 18 June 2009 14
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Interior Point Methods

Theory: IPMs converge in O(y/n) or O(n) iterations
Practice: IPMs converge in O(logn) iterations
... but one iteration may be expensive!

Suppose A € R™*™ is a dense matrix.
Major computational effort when solving separable QP
(separable QP means that @) = D, diagonal).

build H = A(Q+0-H~1al"  Omnm?)
compute Cholesky H = LALT  O(m?)

Recall n > m.
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Ill-conditioning of © = v 5!

For active constraints: O;=wv/s; — 0 @j_l — 00;

For inactive constraints: 0, = v;/s; — o0 @j_l — 0.

Goldfarb and Scheinberg, A product form Cholesky factoriza-

tion for handling dense columns in IPMs for linear programming,
Mathematical Programming, 99(2004) 1-34.

Although © = (Q + ©~ 1)~ behaves badly, the Cholesky factoriza-
tion H = LALL behaves well:

A captures instability (variability) of ©; i
L is well conditioned (bounded independently of ©).

Represent L = L1Lo ... Ly,, where L; has entries only in column .

Drawback: PFCEF is sequential by nature.
Montreal, 18 June 2009 16
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Interior Point Methods: Summary

e Interior Point Methods for QP

— polynomial algorithms

— excellent practical behaviour

— competitive for small problems (< 1,000,000 vars)

— beyond competition for large problems (> 1,000,000 vars)

e Opportunities for SVM training with IPMs
— dense data
— very large size
— well-suited to parallelism
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Part 2:

Support Vector Machine training
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Classification

We consider a set of points X = {x1,x9,...,2n}, r; € R™
to be classified into two subsest of “good” and “bad” ones.

X=GUBand GNB=0.

We look for a tunction f : X +— R such that
f(x) > 0if x € G and

f(x) <0ifx € B.

Usually n > m.
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Linear Classification

We consider a case when f is a linear function:
Flz)=w'z+0b,

where w € R and b € R.
In other words we look for a hyperplane which separates “good”

points from “bad” ones.

In such case the decision rule is given by y = sgn(f(x)).
If f(x;) >0, theny; =+1and z; € G.
If f(x;) <0, then y; =—1and z; € B.

We say that there is a linearly separable training sample

S = ((3717 yl)? (3727 y2)7 R ($n7 yn))
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How does it work?

Given a linearly separable database (training sample)

S — <(£Cl, y1>7 <£C27 y2)7 A (xna yn))
find a separating hyperplane

wlz + b= 0,
which satisfies

yi(w'z; +b) >1, Vi=1,2,...,n

Given a new (unclassified) point x(, compute

yo = sgn(w’ z + b)
to decide whether x( is “good” or “bad”.
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Separating Hyperplane

To guarantee a nonzero margin of separation we look for a hyperplane
wle+b= 0,

such that

wT:L“Z- +0b > 1 for “good” points; ”LUTZI?Z'—I—[) < —1 for “bad” points.

This is equivalent to:

T,

wry bos o Lo g “good” points;
w w |w| ’
T,

Wy b Lo for “had” points.

In this formualtion the normal vector of the separating hyperplane
ﬁ has unit length. In this case the margin between “good” and

“bad” points is measured by ﬁ This margin should be maximised.

This can be achieved by minimising the norm ||wl||.

Montreal, 18 June 2009 22
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QP Formulation

Finding a separating hyperplane can be formulated as a quadratic
programming problem:

min %wTw

st yi(wlae;+0)>1, Vi=1,2,...,n

In this formulation the Euclidean norm of w is minimized.
This is clearly a convex optimization problem.

(We can minimize ||wl||; or ||w]co and then the problem can be
reformulated as an LP.)
Two major difficulties:
e (Clusters may not be separable at all
—— minimize the error of misclassifications:

e Clusters may be separable by a nonlinear manifold
—— find the right feature map.
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Difficult Cases

Nonseparable clusters:

Errors when defining clusters of good
and bad points.

Minimize the global error of misclas-
sifications: &1 + &9.

(0]
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Linearly nonseparable case

If perfect linear separation is impossible then for each misclassified
data we introduce a slack variable & which measures the distance
between the hyperplane and misclassified data.

Finding the best hyperplane can be formulated as a quadratic pro-
gramming problem:

n
min %wTuH—CZfZ-
1=1
st yi(wlz;+b)+&>1, Vi=1,2,....n,

& >0 Vi=1,2,...,n,

where C' (C' > 0) controls the penalisation for misclassifications.
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We will derive the dual quadratic problem.

We associate Lagrange multipliers z € R" (2>0) and s € R (s>0)
with the constraints yi(wT:I:Z- +b)+& > 1and € > 0, and write the
Lagrangian

n

1 n
L(w,b,&,2,5) = §wTw +CY &Y zlyiwle +b)+&—1)—s' €.
i—1 i1

SVM community uses o instead of z.
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Dual Quadratic Problem

Stationarity conditions (with respect to all primal variables):

n
VwlL(w, b, 2,8) = w— > yjz;z; =0
1=1
Ve L(w,b,€,2,8) = C—2z;—s; =0

n
i=1

Substituting these equations into the Lagrangian function we get

n

1 n
L(w,b,&,2,8) = > 2 ~5 > wiyilay zj)zz).

i=1 ij=1
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Hence the dual problem has the form:

n n
max Z 2 —% D yi?/j(mé'rxj)zizj

1=1 1,7=1
n
s.t. > iz =0,
1=1
0<z <C, Vi=1,2,...,n,

SVM community uses « instead of z.
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Dual Quadratic Problem (continued)

Observe that the dual problem has a neat formulation in which only
dual variables z are present. (The primal variables (w,b, &) do not
appear in the dual.)

Define a dense matrix @ € R"*" such that ¢;; = yzy](a:ZTx]) .

Rewrite the (dual) quadratic program:

max elz — %ZTQZ,

S.t. yTz = (),
0 <z<C(le,

where e is the vector of ones in R'.

The matrix () corresponds to a specific linear kernel function.
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Dual Quadratic Problem (continued)

The primal problem is convex hence the dual problem must be well
defined too. The dual problem is to maximise the concave function.
We can prove it directly:.

Lemma: The matrix () is positive semidefinite.

Proof: Define

G = yizilyoral . [ynzn]’ € R
and observe that
Q=GG" (e, qj=uyuy;(x]z).
For any z € R" we have
Q=TGN aT ) =G ) >0
hence () is positive semidefinite.
Montreal, 18 June 2009 30
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Part 3:

IPMs for Support Vector Machine training
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Interior Point Methods in SVM Context

Fine and Scheinberg, Efficient SVM training using low-rank ker-
nel representations, J. of Machine Learning Res., 2(2002) 243-264.

Ferris and Munson, Interior point methods for massive support
vector machines, STAM J. on Optimization, 13(2003) 783-804.

Woodsend and Gondzio, Exploiting separability in large-scale

linear SVM training, Tech Rep MS-07-002, Edinburgh 2007.
http://www.maths.ed.ac.uk/“gondzio/reports/wgSVM.html

Unified framework which includes:

e Classification (1 and ¢y error)
e Universum SVM

e Ordinal Regression
e Regression

Reformulate QPs as separable.
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IPMs for SVMs: Exploit separability

Key trick: represent () = FTDF, where F' € kan, k< n.
Introduce new variable ©w = F'z.

Observe: 21 Qz = 2L FI' DFz = ul Du.

' T 17T
. min c* z + sutDu
min ¢!z + %ZTQZ +5

s.t. Az =, — &t Az =b,
z > 0. Fz—u=0,
- z > 0.
non-separable QP separable QP
m constraints m + k constraints
n variables n + k variables
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SVM training with IPMs

Comparison: SVM-HOPDM vs other algorithms
Data with 255 attributes. C' = 1, 10% misclassified.

1000 p——r—r— : :
E SVM-HOPDM o e . i
[ SVMIlight R ﬁ/ ‘ X .
 SVMPerf S el . ]
3 L|bL|neaI’ ....... e L j:‘./l‘i,/x/ //-:‘ %
- LibSVM E— ST T
SVMTorch SECRES N S e S
100 FSVM-QP O 1
SVM-QP Presolve ™"~ Ao //_!x_;f" :
. o :///, i

Training time (s)

Size of training data set

Montreal, 18 June 2009
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Comparison: SVM-HOPDM vs other algorithms
Data with 255 attributes. C' = 100, 10% misclassified.

1000 ¢

— — .
E SVM-HOPDM —— .
[ SVM”gh"[ I{f “'X'j@" P
- SVMPeff / e o A
[ LibLinear; RS N e
- LIbSVM // T 7 T
SVMTojch .~ R - T
100 FSVM:QP e L e 5
t SVM-QP Presolve -4 7 e :
' ,/," » - /_./"'/
=
Q
£
= ':
§=
o
-

Size of training data set
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SVM training with IPMs

Comparison: of training times using real-world data sets.
Each data set was trained using C' = 1, 10 and 100.
NC indicates that the method did not converge to a solution.

Data set C'| SVM- syMiieht  gympert  [,1g- LiBSVM SVMTorch SVM-QP SVM-Q
(n x m) HOPDM LINEAR presoly
Adult 1] 165 ST.7 280.7 1.6 1924 621.8 1645 188
32561 %123 10| 26.5 1043.3 3628.0 9.3  857.7 5046.0  284.1  206.

100 279 104474 291472 64.2 5572.1  44962.5 5448 216
Covtype 1] 47.7 992 .4 795.6 85 2085.8 21879  731.8 405
150000x54 10| 52.7 6021.2 12274.5 34.3 2516.7  10880.6  971.6 441

100| 554 66263.8 58699.8 2352 6588.0  74418.1 1581.8 457
MNIST 1| 796 262.9 754.1 93  197.1 660.1  233.0 1019
10000780 10| 83.4  3425.5 8286.8 65.4 1275.2 57481 3494 1104

100 86.2 NC 196789.0 NC 11456.4  54360.6  602.5 1267
SensIT 1| 552 913.5 8418.3 53.6  2542.0 2814.4 5352 456
78823 x 100 10| 60.1 77974 > 125000 369.1 7867.8  21127.8  875.4  470.

100 63.6 NC > 125000 NC 49293.7 204642.6 1650.1 489
USPS 1] 132 15.0 40.9 4.4 10.4 7.7 51.2 117
7291 %256 10| 14.2 147.4 346.6 27.7 20.9 23.9 64.7 127

100 14.3 13452 2079.5 NC 03.8 142.4 86.9 143

Montreal, 18 June 2009
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Computational effort of IPM-based SVM implementation:
build H = A(Q+0-H)~1Al  O(nm?)
compute Cholesky H = LALT — O(m?)

Attempts to reduce this effort

Gertz and Griffin, SVM classifiers for large datasets, Tech Rep
ANL/MCS-TM-289, Argonne National Lab, 2005.

—— use iterative method (preconditioned conjugate gradient).

Jung, O’Leary and Tits, Adaptive constraint reduction for train-
ing SVMs, Electronic Trans on Num Analysis 31(2008) 156-177.

—— use a subset of points n1 K n
mimic “active-set” strategy within IPM.
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SVM training with IPMs

Parallelism

Exploit bordered block-diagonal structure in augm. system
Break H into blocks:

and decompose

)
Hy
H — .
A Ay
Ly 1 [ A4
| L
La, ... Ly Lo |

AT
AT

2

H, AL
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Parallelism (continued)
e Cholesky factor preserves block-structure:

H—LALQZ Li=I1 AN=H; i=1.p
La = AL A =40 i=1.p
Hy = Zz: AH,L.—lA;T = LoAg L]

A I 18 solved by

ti = L;lr, i=1.p
ty =Ly '(h—) Lat)
%—Alwl—Op

e And the system H [AU] = [T

Av; = L7 (g — LT AXN), i=1.p
e Operations (Cholesky, Solve, Product) performed on sub-blocks
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Comparison: Parallel software

PASCAL Large Scale Learning Challenge
http://largescale.first.fraunhofer.de/about/

Data set n m
Alpha 500000 500
Beta 500000 500
Gamma 500000 500
Delta 500000 500
Espilon 500000 2000
Zeta 500000 2000
FD 2560000 900
OCR 3500000 1156
DNA 6000000 800

OOPS Object-Oriented Parallel Solver
http://www.maths.ed.ac.uk/“gondzio/parallel/solver.html
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Dataset # cores C' |OOPS PGPDT PSVM  Milde
Alpha 16 1 39 3673 1684 5806113
0.01 50 4269 4824 (85120
Beta 16 1 120 5003 2390 5834073
0.01 48 4738 4816 (84194
Gamma 16 1 44 — 1685 5837153
0.01 49 7915 4801 (84445
Delta 16 1 40 — 1116 5576813
0.01 46 9492 4865 (84421
Epsilon 32 1 730 — 17436 558488;
0.01] 293 — 36319 (56984
Zeta 32 1 544 — 14368 (22814
0.01] 297 — 37283 568059;
ED 32 1 3199 — 5392273
0.01] 2152 — 52408
OCR 32 1 1361 — 5583073
0.01] 1330 — 36523
DNA 48 1 2668 — —
0.01] 6557 — — 14821
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Dataset C O0OPS LibLinear LaRank
n # cores Time| n Time| n Time
Alpha 1 500,000 16 39(500,000 1471500,000 3354
0.01 50 112 24774
Beta 1 500,000 16 120(500,000 1351500,000 6372
0.01 48 112 1880
Gamma 1 500,000 16 44/500,000 (8845% 500,000 —
0.01 49 34 20318
Delta 1 500,000 16 40|500,000 (13266& 500,000 —
0.01 46 42 —
Epsilon 1 500,000 32 7301250,000 316 500,000 5599
0.01 293 265 2410
Zeta 1 500,000 32 544 1250,000 278 1500,000 —
0.01 297 248 —
ED 1 12,560,000 32 31991500,000 2311500,000 1537
0.01 2152 193 332
OCR 1 3,500,000 32 1361 250,000 181 1500,000 5695
0.01 1330 121 4266
DNA 1 16,000,000 48 2668 600,000 144 1600,000 300
0.01 6557 30 407
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SVM training with IPMs

A ccuracy measured using area under precision recall curve.
Evaluation results taken from PASCAL Challenge website.

Dataset | OOPS LibLinear LaRank
Alpha [0.1345 0.1601 0.1606
Beta 0.4988 0.4988 (0.5001
Gamma |0.1174 0.1185 0.1187
Delta 10.1344 0.1346 0.1355
Epsilon [0.0341 0.4935 0.4913
Zeta 0.0115 0.4931 0.4875
FD 0.2274 0.2654 0.3081
OCR 10.1595 0.1660 0.1681

Montreal, 18 June 2009
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Nonlinear and/or Indefinite Kernels:
A kernel is a function K, such that for all z;, 2, € X

K (zi, x5) = (i), p(x)),

where ¢ is a mapping from X to an (inner product) feature space F'.
We use (., .) to denote a scalar product.

. T
Linear Kernel K(z;,x;)=x; ;.

Polynomial Kernel K(z;, ;)= ( ,LTZI?]' +1)4.
iyl
Gaussian Kernel K(z;,7j)=e¢ o
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Nonlinear and/or Indefinite Kernels:
Kernels are in general dense matrices making large-scale SVM train-

ing computationally demanding (or impossible).
Challenge: How to approximate kernels?
Find @ with “desirable” properties such that

distance(Q, Q)

is minimized. The distance may be measured with a matrix norm
(say, Frobenius) or a Bregman divergence.

Dhillon and Tropp, Matrix nearness problems with Bregman
divergences, SIAM J. on Matrix An. & Appl., 29(2007) 1120-1146.

Lanckriet, Cristianini, Bartlett, (Ghaoui and Jordan,

Learning the kernel matriz with semidefinite programming,
Journal of Machine Learning Research 5 (2004), 27-72.

Montreal, 18 June 2009 45



J. Gondzio SVM training with IPMs

IPM perspective: nonlinear/indefinite Kernels:
Approximate kernel matrix @, Q;; = K (x;, ;) using low rank outer
product

Q) ~ LALT—I—D,
where L € R"™F Lk < n.

Exploit separability within IPMs

Augmented system becomes:
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Conclusions:

Interior Point Methods

— are well-suited to large scale optimization

Support Vector Machine training

— requires a solution of very large optimization problem

IPMs provide an attractive approach
to solve SVM training problems
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Thank you for your attention!

Woodsend and Gondzio,
Exploiting separability in large-scale linear SVM training,
Tech Rep MS5S-07-002, Edinburgh 2007.

http://www.maths.ed.ac.uk/“gondzio/reports/wgSVM.html

Woodsend and Gondzio,
Hybrid MPI/OpenMP parallel linear SVM training,
Tech Rep ERGO-09-001, Edinburgh, 2009.

http://www.maths.ed.ac.uk/“gondzio/reports/wgHybridSVM.html
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